4-(Difluoroiodo)tricyclene, an Isolable Compound of Type RIF₂ from an Aliphatic lodide

Gregory W. Bradley,^a John H. Holloway,^b Han Joong Koh,^a David G. Morris^{*,a} and Paul G. Watson^b ^a Dept. of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK ^b Dept. of Chemistry, University of Leicester, Leicester LE1 7RH, UK

The synthesis, characterisation and reactivity are reported for the title compound which is the first isolable compound of type RIF₂ from an aliphatic iodide.

Examples of difluoroiodo compounds such as C₆H₅IF₂,¹ CF₃- IF_2^2 and $CH_3IF_2^2$ are known, the last of which can be made and used immediately in solution. Presently we wish to report the synthesis and characterisation of 4-(difluoroiodo)tricyclene 1, which represents the first example of an isolable compound in which the IF₂ functionality is linked to an aliphatic hydrocarbon residue. 4-Iodotricyclene was chosen as the starting material for this investigation for the following reasons: (a) we have previously shown that the 4-position of tricyclene is the bridgehead site from which a nucleofuge departs most reluctantly in any $S_N 1$ reaction hitherto investigated;³ (b) ratedetermining formation of bridgehead radicals takes place with less reluctance than formation of the corresponding carbocation, though there is a correlation between the two processes; 4 (c) we consider it unlikely that C₄I bond heterolysis will occur to give a positively charged iodine group either in 2 or, more particularly, 1; (d) the reaction does not contain the ingredients for a C₄I bond cleavage to occur readily via an SET pathway.

Treatment of a solution of 4-iodotricyclene 2 in carbon tetrachloride with a six-fold molar excess of XeF₂ at ambient temperature for 1 h, followed by removal of solvent and excess of XeF₂ by evacuation at 10^{-2} mmHg at room temperature gave a pale yellow solid product. Assignment of structure 1 to this product was made from NMR spectral data. Both ¹H and ¹³C NMR spectra indicated that the plane of symmetry present in 2 was preserved in the product, and also that the ¹H NMR spectrum of 1, by virtue of the AB pattern for protons H_{3a} and H_{3b} in particular at δ 1.56 and 1.21 (J 11 Hz), showed that the three-membered ring had been preserved [in these systems $J(H_{3a}H_2) = J(H_{3b}H_2) \le 0.5$ Hz].

The 13 C NMR spectrum of 1 shows that the heavy-atom effect, by which carbons bonded to monovalent iodine resonate at abnormally high fields,⁵ is not present in this compound. One noteworthy feature of the spectrum of 1 is a triplet coupling, $^2J(C_4IF)$ 9 Hz. 13 C Chemical shift data for 1 and 2 and a previously made related compound 3⁶ are presented in Table 1. The absence of a heavy-atom effect for carbon atoms bonded to trivalent iodine ⁷ can be most economically rationalised in terms of the increased electronegativity of $-IF_2$ over -I, although other factors previously considered cannot presently be excluded. Recently, further examples of the absence of the heavy-atom effect in trivalent iodine compounds have been provided.⁸

One resonance was observed in the ¹⁹F NMR spectrum, a sharp singlet at δ –193.3 (ext. std. CCl₃F) in the region associated with RIF₂.^{1,2}

In our experiments we detected no evidence for the presence of 4-(tetrafluoroiodo)tricyclene 4 either from fluorination by an excess of XeF_2 or by disproportionation of the observed RIF_2 . We feel that a compound of the type RIF_4 would be fairly hindered, even allowing for the tied-back nature of the 4-tricyclyl system employed.

 Table 1
 ¹³C NMR data for compounds 1, 2 and 3 in CDCl₃

6 5 X		1 X = IF_2 2 X = I 3 X = $I(OCOC_6H_4CI-m)_2$ 4 X = IF_4	
	1	2	3
$\begin{array}{c} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{7} \\ C_{8} \\ C_{10} \end{array}$	24.77 20.66 37.26 80.99 49.27 20.23 12.23	23.74 20.55 43.40 43.90 47.34 19.52 11.77	23.85 20.00 38.26 80.29 49.27 20.23 12.23

Two pieces of available NMR evidence support this contention. Firstly, the ¹³C NMR spectra of some I^V compounds⁹ indicate that C₄ of 4 would resonate at significantly higher field than our observed value for 1. Secondly, the four equivalent coplanar fluorines of 4 would show a ¹⁹F resonance in a very different region of the spectrum⁹ from those in 1. The NMR evidence that we have adduced is supported by mass spectral analysis which showed a parent ion for 1 at m/z 300 (70 eV, electron impact) with no evidence for a tetrafluoroiodo product.

4-(Difluoroiodo)tricyclene 1 is a pale yellow waxy solid which is stable in air for up to 4 h and in CCl_4 solution, under an inert atmosphere, indefinitely. Compound 1 is probably an optimum structure for conferring longevity on aliphatic compounds of type RIF₂ and very likely places an upper limit on the lifetime of such compounds.

We were interested in the reactivity of 1 as a fluorinating agent, as has been observed for $ArIF_2$.¹⁰ Accordingly 1 was allowed to react with norbornadiene to give by ¹H NMR analysis, albeit in a different solvent, sensibly the same products as found previously.

As an extension of this work we found that reaction of CI_4 , with XeF₂, under the same conditions, led to extensive decomposition rather than tetra(difluoroiodo)methane.

Experimental

The reaction was carried out in standard Schlenk apparatus under an N_2 atmosphere.

To a stirred, degassed solution of 4-iodotricyclene (30 mg, 0.12 mmol) in CCl₄, a sample of XeF₂ (120 mg, 0.7 mmol), preweighed into a sample bottle in a dry-box, was added. After 1 h, the colourless solution had turned pale yellow and was subjected to high vacuum for 15 min to remove solvent and

excess of XeF_2 . The resulting yellow solid was then dissolved in $CDCl_3$ and transferred to an NMR tube by a Pasteur pipette.

References

- 1 D. F. Shellhammer, R. J. Conner, R. E. Richardson and V. L. Heasley, J. Org. Chem., 1984, 49, 5015.
- 2 J. A. Gibson, R. K. Marat and A. F. Janzen, Can. J. Chem., 1975, 53, 3044.
- 3 S. A. Sherrod, R. G. Bergman, G. J. Gleicher and D. G. Morris, J. Am. Chem. Soc., 1972, 94, 4615.
- 4 C. Rüchardt, V. Golzke and G. Range, Chem. Ber., 1981, 114, 2769.
- 5 F. W. Wehrli, A. P. Marchand and S. Wehrli, *Interpretation of Carbon-13 NMR Spectra*, 2nd edn., Wiley, Chichester, 1983.

- 6 D. G. Morris and A. G. Shepperd, J. Chem. Soc., Chem. Commun., 1981, 1250.
- 7 K. Friedrich, W. Amanu and H. Fritz, *Chem. Ber.*, 1978, 111, 2099; T. M. Balthazor, D. E. Godar and B. R. Stults, *J. Org. Chem.*, 1979, 44, 1447.
- 8 A. R. Katritzky, J. K. Gallos and H. D. Durst, *Magn. Reson. in Chem.*, 1989, 27, 815.
- 9 G. Oates and J. M. Winfield, J. Chem. Soc., Dalton Trans., 1974, 119.
- 10 A. Gregorčič and M. Zupan, J. Chem. Soc., Perkin Trans. 1, 1977, 1446.

Paper 2/04909K Received 14th September 1992 Accepted 17th September 1992